Eni i-Sint tech OW-30

APPLICATIONS

Eni i-Sint tech 0W-30 is a high-quality lubricant with top synthetic formula developed by Eni research to meet the lubrication requirements of Volkswagen group's cars or commercial vehicles, which require a product that complies with the VW 50300,50600 and 50601 specifications, i.e. Long Life Service.

CUSTOMER ADVANTAGES

The viscosimetric properties of Eni i-Sint tech OW-30 makes it possible to perfectly lubricate the mechanical parts of the engine with consequent reduction of the friction phenomena, which corresponds to significant fuel savings and a reduction in the pollutant emissions of carbon dioxide (CO2) at the vehicle exhaust.
Particular attention is paid to the selection of the raw materials that make up the formulation of the product, ensuring, in any operating condition of the engine, the highest protection against the wear and formation of deposits.
Eni i-Sint tech 0W-30 has a great fluidity, which makes it suitable to produce a particularly durable oil film that can guarantee excellent engine starting even in very low climatic conditions.
Eni i-Sint tech 0W-30 resists deterioration, especially if resulting from oxidation due to long exposure to high temperatures in the presence of air and other agents, enabling to reach the manufacturer's replacement intervals at a greater quality level.

SPECIFICATIONS

VW 503 00, 506 00, 50601 (Approved)

Eni i-Sint tech OW-30

CHARACTERISTICS

Properties	Method	Unit	Typical
Density at $15^{\circ} \mathrm{C}$	ASTM D 4052	$\mathrm{~kg} / \mathrm{m}^{3}$	856
Viscosity at $100^{\circ} \mathrm{C}$	ASTM D 445	$\mathrm{~mm}{ }^{2} / \mathrm{s}$	9.6
Viscosity Index	ASTM D 2270	-	165
Viscosity at $-35^{\circ} \mathrm{C}$	ASTM D 5293	$\mathrm{mPa} \cdot \mathrm{s}$	5580
Flash point COC	ASTM D 92	${ }^{\circ} \mathrm{C}$	215
Pour point	ASTM D 5950	${ }^{\circ} \mathrm{C}$	-39
B. N.	ASTM D 2896	$\mathrm{mg} \mathrm{KOH} / \mathrm{g}$	10.0

